Ultrafilters on Semifilters

Will Brian

February 2, 2015

Will Brian Ultrafilters on Semifilters

・ロト ・回ト ・ヨト ・ヨト

æ

Table of contents

2 Filters, semifilters, and $\mathcal{P}(\omega)/\mathrm{Fin}$

3 Bases and towers

4 Large small cardinals give us *P*-sets

5 A few questions

Dynamical systems: a very short introduction

 A dynamical system is a pair (X, f), where X is a compact Hausdorff space and f : X → X is continuous.

Dynamical systems: a very short introduction

- A dynamical system is a pair (X, f), where X is a compact Hausdorff space and f : X → X is continuous.
- If \mathcal{U} is an open cover of X, then a \mathcal{U} -pseudo-orbit is an orbit computed with "errors" in \mathcal{U} .

Dynamical systems: a very short introduction

- A dynamical system is a pair (X, f), where X is a compact Hausdorff space and f : X → X is continuous.
- If \mathcal{U} is an open cover of X, then a \mathcal{U} -pseudo-orbit is an orbit computed with "errors" in \mathcal{U} .
- X is chain transitive if for any $x, y \in X$ and any \mathcal{U}, x and y can be connected by a \mathcal{U} -pseudo-orbit.

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Motivation: topological dynamics}\\ \mbox{Filters, semifilters, and $\mathcal{P}(\omega)$/Fin}\\ \mbox{Bases and towers}\\ \mbox{Large small cardinals give us P-sets}\\ \mbox{A few questions} \end{array}$

Dynamical systems: a very short introduction

- A dynamical system is a pair (X, f), where X is a compact Hausdorff space and f : X → X is continuous.
- If \mathcal{U} is an open cover of X, then a \mathcal{U} -pseudo-orbit is an orbit computed with "errors" in \mathcal{U} .
- X is chain transitive if for any $x, y \in X$ and any \mathcal{U}, x and y can be connected by a \mathcal{U} -pseudo-orbit.
- For example, if (and only if) X is connected then (X, id_X) is chain transitive.

 $\begin{array}{c} \mbox{Motivation: topological dynamics}\\ \mbox{Filters, semifilters, and $\mathcal{P}(\omega)$/Fin}\\ \mbox{Bases and towers}\\ \mbox{Large small cardinals give us P-sets}\\ \mbox{A few questions} \end{array}$

Dynamical systems: a very short introduction

- A dynamical system is a pair (X, f), where X is a compact Hausdorff space and f : X → X is continuous.
- If \mathcal{U} is an open cover of X, then a \mathcal{U} -pseudo-orbit is an orbit computed with "errors" in \mathcal{U} .
- X is chain transitive if for any $x, y \in X$ and any \mathcal{U}, x and y can be connected by a \mathcal{U} -pseudo-orbit.
- For example, if (and only if) X is connected then (X, id_X) is chain transitive. For another (more important) example:

Theorem

 ω^* is chain transitive.

<ロ> <同> <同> <三>

Chain transitivity is important

In fact, the fact that ω^* is chain transitive seems somehow to capture the main features of its dynamical structure:

Theorem

If X is a metrizable dynamical system, then X is a quotient of ω^* if and only if X is chain transitive.

Theorem

Assuming $MA_{\sigma\text{-centered}}$, this extends to all X with $w(X) < \mathfrak{c}$.

Theorem

It is consistent with and independent of ZFC that the shift map and its inverse are the only chain transitive autohomeomorphisms ω^* .

filters and friends

- A filter \mathcal{F} on a partial order $\langle \mathbb{P}, \leq \rangle$ is a subset of \mathbb{P} satisfying:
 - **1** Nontriviality: $\emptyset \neq \mathcal{F}$.
 - **2** Upwards heredity: if $a \in \mathcal{F}$ and $a \leq b$, then $b \in \mathcal{F}$.
 - Ownwards directedness: if a, b ∈ F then there is some c ∈ F such that c ≤ a and c ≤ b.

filters and friends

- A filter \mathcal{F} on a partial order $\langle \mathbb{P}, \leq \rangle$ is a subset of \mathbb{P} satisfying:
 - **1** Nontriviality: $\emptyset \neq \mathcal{F}$.
 - **2** Upwards heredity: if $a \in \mathcal{F}$ and $a \leq b$, then $b \in \mathcal{F}$.
 - Ownwards directedness: if a, b ∈ F then there is some c ∈ F such that c ≤ a and c ≤ b.

If we omit (2) then we get the definition of a *filter base*.

イロト イポト イラト イラト

filters and friends

A filter \mathcal{F} on a partial order $\langle \mathbb{P}, \leq \rangle$ is a subset of \mathbb{P} satisfying:

- **1** Nontriviality: $\emptyset \neq \mathcal{F}$.
- **2** Upwards heredity: if $a \in \mathcal{F}$ and $a \leq b$, then $b \in \mathcal{F}$.
- Ownwards directedness: if a, b ∈ F then there is some c ∈ F such that c ≤ a and c ≤ b.

If we omit (2) then we get the definition of a *filter base*.

If we omit (3) then we get the definition of a *semifilter*.

filters and friends

A filter \mathcal{F} on a partial order $\langle \mathbb{P}, \leq \rangle$ is a subset of \mathbb{P} satisfying:

- **1** Nontriviality: $\emptyset \neq \mathcal{F}$.
- **2** Upwards heredity: if $a \in \mathcal{F}$ and $a \leq b$, then $b \in \mathcal{F}$.
- Ownwards directedness: if a, b ∈ F then there is some c ∈ F such that c ≤ a and c ≤ b.

If we omit (2) then we get the definition of a *filter base*.

If we omit (3) then we get the definition of a *semifilter*.

- \mathcal{F} is an *ultrafilter* if it satisfies (1) (3) and
 - **4** Maximality: no proper superset of \mathcal{F} is a filter.

イロン イヨン イヨン イヨン

P(ω)/Fin is the set of equivalence classes of subsets of ω, where two subsets are equivalent iff they differ by a finite set.

- P(ω)/Fin is the set of equivalence classes of subsets of ω, where two subsets are equivalent iff they differ by a finite set.
- *P*(ω)/Fin is naturally partially ordered by ⊆*, where A ⊆* B means B \ A is finite.

- *P*(ω)/Fin is the set of equivalence classes of subsets of ω,
 where two subsets are equivalent iff they differ by a finite set.
- *P*(ω)/Fin is naturally partially ordered by ⊆*, where A ⊆* B means B \ A is finite.
- The set of ultrafilters on P(ω)/Fin has a naturally topology making it the Čech-Stone compactification of ω, denoted ω^{*}.

イロン イヨン イヨン イヨン

- *P*(ω)/Fin is the set of equivalence classes of subsets of ω,
 where two subsets are equivalent iff they differ by a finite set.
- *P*(ω)/Fin is naturally partially ordered by ⊆*, where A ⊆* B means B \ A is finite.
- The set of ultrafilters on P(ω)/Fin has a naturally topology making it the Čech-Stone compactification of ω, denoted ω^{*}.
- Every filter *F* on *P*(ω)/Fin corresponds to a closed subset *F̂* of ω*, and *F* ⊆ *G* iff *Ĝ* ⊆ *F̂*. This correspondence is a special case of what is called *Stone duality*.

an important semifilter

Say that $A \subseteq \omega$ is *thick* if A contains arbitrarily long intervals. Let Θ denote the semifilter of (equivalence classes of) thick sets.

an important semifilter

Say that $A \subseteq \omega$ is *thick* if A contains arbitrarily long intervals. Let Θ denote the semifilter of (equivalence classes of) thick sets.

Theorem

For any filter \mathcal{F} on $\mathcal{P}(\omega)/\text{Fin}$, the following are equivalent:

- *F* is an ultrafilter on Θ.
- $\hat{\mathcal{F}}$ is a minimal dynamical subsystem of (ω^*, σ) .
- $\hat{\mathcal{F}}$ is a minimal right ideal of $(\omega^*, +)$.

an important semifilter

Say that $A \subseteq \omega$ is *thick* if A contains arbitrarily long intervals. Let Θ denote the semifilter of (equivalence classes of) thick sets.

Theorem

For any filter \mathcal{F} on $\mathcal{P}(\omega)/\mathrm{Fin}$, the following are equivalent:

- \mathcal{F} is an ultrafilter on Θ .
- $\hat{\mathcal{F}}$ is a minimal dynamical subsystem of (ω^*, σ) .
- $\hat{\mathcal{F}}$ is a minimal right ideal of $(\omega^*, +)$.

Thus understanding the ultrafilters on Θ helps us to understand the canonical dynamical and algebraic structures on ω^* .

p and t

Fix a partial order $\mathbb P,$ and consider the following "small cardinals":

• $\mathfrak{p}_{\mathbb{P}}$ is the least size of an unbounded filter base in $\mathbb{P}.$

イロト イヨト イヨト イヨト

æ

p and t

Fix a partial order $\mathbb P,$ and consider the following "small cardinals":

- $\mathfrak{p}_{\mathbb{P}}$ is the least size of an unbounded filter base in $\mathbb{P}.$
- $\mathfrak{t}_{\mathbb{P}}$ is the least size of an unbounded chain in \mathbb{P} .

\mathfrak{p} and \mathfrak{t}

Fix a partial order $\mathbb P,$ and consider the following "small cardinals":

- $\mathfrak{p}_{\mathbb{P}}$ is the least size of an unbounded filter base in $\mathbb{P}.$
- $\mathfrak{t}_{\mathbb{P}}$ is the least size of an unbounded chain in \mathbb{P} .

Notice that $\mathfrak{p} = \mathfrak{p}_{\mathcal{P}(\omega)/\mathrm{Fin}}$ and $\mathfrak{t} = \mathfrak{t}_{\mathcal{P}(\omega)/\mathrm{Fin}}$.

p and t

Fix a partial order $\mathbb P,$ and consider the following "small cardinals":

- $\mathfrak{p}_{\mathbb{P}}$ is the least size of an unbounded filter base in \mathbb{P} .
- $\mathfrak{t}_{\mathbb{P}}$ is the least size of an unbounded chain in \mathbb{P} .

Notice that $\mathfrak{p} = \mathfrak{p}_{\mathcal{P}(\omega)/\mathrm{Fin}}$ and $\mathfrak{t} = \mathfrak{t}_{\mathcal{P}(\omega)/\mathrm{Fin}}$.

Theorem (Malliaris and Shelah, 2012)

 $\mathfrak{p} = \mathfrak{t}.$

・ロン ・回と ・ヨン・

p and t

Fix a partial order $\mathbb P,$ and consider the following "small cardinals":

- $\mathfrak{p}_{\mathbb{P}}$ is the least size of an unbounded filter base in \mathbb{P} .
- $\mathfrak{t}_{\mathbb{P}}$ is the least size of an unbounded chain in \mathbb{P} .

Notice that $\mathfrak{p} = \mathfrak{p}_{\mathcal{P}(\omega)/\mathrm{Fin}}$ and $\mathfrak{t} = \mathfrak{t}_{\mathcal{P}(\omega)/\mathrm{Fin}}$.

Theorem (Malliaris and Shelah, 2012)

 $\mathfrak{p} = \mathfrak{t}.$

Proof.

Maybe you should ask Justin . . .

イロン イヨン イヨン イヨン

Motivation: topological dynamics Filters, semifilters, and $\mathcal{P}(\omega)/\text{Fin}$ Bases and towers Large small cardinals give us *P*-sets A few questions

Extending the M-S equality

Recall that any subset of ω can be identified with an element of 2^{ω} (via characteristic functions). Thus a semifilter on $\mathcal{P}(\omega)/\text{Fin}$ can be identified with a subset of 2^{ω} .

Extending the M-S equality

Recall that any subset of ω can be identified with an element of 2^{ω} (via characteristic functions). Thus a semifilter on $\mathcal{P}(\omega)/\text{Fin can}$ be identified with a subset of 2^{ω} .

Theorem

If \mathfrak{F} is a semifilter and is G_{δ} in 2^{ω} , then $\mathfrak{p}_{\mathfrak{F}} = \mathfrak{t}_{\mathfrak{F}}$.

Remark: The requirement that \mathfrak{F} be G_{δ} cannot be relaxed: there is an F_{σ} semifilter \mathfrak{F} such that $\mathfrak{p}_{\mathfrak{F}} = \mathfrak{t}_{\mathfrak{F}} = \aleph_0$.

<ロ> (四) (四) (三) (三)

Extending the M-S equality

Recall that any subset of ω can be identified with an element of 2^{ω} (via characteristic functions). Thus a semifilter on $\mathcal{P}(\omega)/\text{Fin can}$ be identified with a subset of 2^{ω} .

Theorem

If \mathfrak{F} is a semifilter and is G_{δ} in 2^{ω} , then $\mathfrak{p}_{\mathfrak{F}} = \mathfrak{t}_{\mathfrak{F}}$.

Remark: The requirement that \mathfrak{F} be G_{δ} cannot be relaxed: there is an F_{σ} semifilter \mathfrak{F} such that $\mathfrak{p}_{\mathfrak{F}} = \mathfrak{t}_{\mathfrak{F}} = \aleph_0$. There is also a Δ_3^0 semifilter \mathfrak{F} that is comeager in 2^{ω} , but still has $\mathfrak{p}_{\mathfrak{F}} = \mathfrak{t}_{\mathfrak{F}} = \aleph_0$.

Proof (not really)

proof sketch.

Since $\mathfrak{p} = \mathfrak{t}$, it is enough to show that $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}} \leq \mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$. We'll sketch the argument for $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}}$:

Proof (not really)

proof sketch.

Since $\mathfrak{p} = \mathfrak{t}$, it is enough to show that $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}} \leq \mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$. We'll sketch the argument for $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}}$: Given $\kappa < \mathfrak{p}$, we want to show $\kappa < \mathfrak{p}_{\mathfrak{F}}$. Let $\{A_{\alpha} : \alpha < \kappa\}$ be a chain in \mathfrak{F} .

Proof (not really)

proof sketch.

Since $\mathfrak{p} = \mathfrak{t}$, it is enough to show that $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}} \leq \mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$. We'll sketch the argument for $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}}$: Given $\kappa < \mathfrak{p}$, we want to show $\kappa < \mathfrak{p}_{\mathfrak{F}}$. Let $\{A_{\alpha} : \alpha < \kappa\}$ be a chain in \mathfrak{F} . By Bell's Theorem, it suffices to use $\mathrm{MA}_{\sigma\text{-centered}}^{\kappa}$ to find a lower bound for this chain in \mathfrak{F} .

Proof (not really)

proof sketch.

Since $\mathfrak{p} = \mathfrak{t}$, it is enough to show that $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}} \leq \mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$. We'll sketch the argument for $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}}$: Given $\kappa < \mathfrak{p}$, we want to show $\kappa < \mathfrak{p}_{\mathfrak{F}}$. Let $\{A_{\alpha} : \alpha < \kappa\}$ be a chain in \mathfrak{F} . By Bell's Theorem, it suffices to use $\mathrm{MA}_{\sigma\text{-centered}}^{\kappa}$ to find a lower bound for this chain in \mathfrak{F} . Mathias forcing works.

Proof (not really)

proof sketch.

Since $\mathfrak{p} = \mathfrak{t}$, it is enough to show that $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}} \leq \mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$. We'll sketch the argument for $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{F}}$: Given $\kappa < \mathfrak{p}$, we want to show $\kappa < \mathfrak{p}_{\mathfrak{F}}$. Let $\{A_{\alpha} : \alpha < \kappa\}$ be a chain in \mathfrak{F} . By Bell's Theorem, it suffices to use $\mathrm{MA}_{\sigma\text{-centered}}^{\kappa}$ to find a lower bound for this chain in \mathfrak{F} . Mathias forcing works. We have κ dense sets to find a lower bound in $\mathcal{P}(\omega)/\mathrm{Fin}$, and (using the fact that \mathfrak{F} is G_{δ} , we can use countably many more dense sets to ensure that this lower bound is actually in \mathfrak{F} .

If $\mathfrak{p} = \mathfrak{c}$, then . . .

Theorem

Let \mathfrak{F} be a G_{δ} semifilter. If $\mathfrak{p} = \mathfrak{c}$, then there is an ultrafilter on \mathfrak{F} that is also a P-filter.

・ロト ・回ト ・ヨト ・ヨト

2

If $\mathfrak{p} = \mathfrak{c}$, then . . .

Theorem

Let \mathfrak{F} be a G_{δ} semifilter. If $\mathfrak{p} = \mathfrak{c}$, then there is an ultrafilter on \mathfrak{F} that is also a P-filter.

Proof.

Let $\langle S_{\alpha} : \alpha < \mathfrak{c} \rangle$ be an enumeration of \mathfrak{F} . We construct a (reverse well ordered) chain $\{X_{\alpha} : \alpha < \mathfrak{c}\}$ in \mathfrak{F} as follows. Set $X_0 = \omega$. If X_{α} has already been defined, let $X_{\alpha+1} = X_{\alpha} \cap S_{\alpha}$ if $X_{\alpha} \cap S_{\alpha} \in \mathfrak{F}$, and otherwise let $X_{\alpha+1} = X_{\alpha}$. For limit α , let X_{α} be any lower bound in \mathfrak{F} of the chain $\{X_{\beta} : \beta < \alpha\}$; such a bound exists because $\alpha < \mathfrak{t}_{\mathfrak{F}}$. A chain constructed in this way will be the basis for an ultrafilter on \mathfrak{F} , and is clearly a *P*-filter.

Example I: cool *P*-points

Corollary

Suppose $\mathfrak{p} = \mathfrak{c}$. If \mathfrak{F} is a G_{δ} semifilter that also has the Ramsey property, then there is a P-point $p \in \omega^*$ with $p \subseteq \mathfrak{F}$.

Example I: cool *P*-points

Corollary

Suppose $\mathfrak{p} = \mathfrak{c}$. If \mathfrak{F} is a G_{δ} semifilter that also has the Ramsey property, then there is a P-point $p \in \omega^*$ with $p \subseteq \mathfrak{F}$.

 There is a P-point p such that every A ∈ p contains arbitrarily long arithmetic sequences. (Notice that such an ultrafilter is a "down-to-earth" example of a P-point that fails to be selective.)

Example I: cool *P*-points

Corollary

Suppose $\mathfrak{p} = \mathfrak{c}$. If \mathfrak{F} is a G_{δ} semifilter that also has the Ramsey property, then there is a P-point $p \in \omega^*$ with $p \subseteq \mathfrak{F}$.

- There is a P-point p such that every A ∈ p contains arbitrarily long arithmetic sequences. (Notice that such an ultrafilter is a "down-to-earth" example of a P-point that fails to be selective.)
- There is a *P*-point *p* such that for every $A \in p$, $\sum_{n \in A} \frac{1}{n}$ diverges.

イロト イヨト イヨト イヨト

Example I: cool P-points

Corollary

Suppose $\mathfrak{p} = \mathfrak{c}$. If \mathfrak{F} is a G_{δ} semifilter that also has the Ramsey property, then there is a P-point $p \in \omega^*$ with $p \subseteq \mathfrak{F}$.

- There is a P-point p such that every A ∈ p contains arbitrarily long arithmetic sequences. (Notice that such an ultrafilter is a "down-to-earth" example of a P-point that fails to be selective.)
- There is a *P*-point *p* such that for every $A \in p$, $\sum_{n \in A} \frac{1}{n}$ diverges.
- Fix a copy of the Rado graph with ω as the set of vertices. There is a P-point p such that for every A ∈ p, some subset of A is isomorphic to the Rado graph.

Example I: cool P-points

Corollary

Suppose $\mathfrak{p} = \mathfrak{c}$. If \mathfrak{F} is a G_{δ} semifilter that also has the Ramsey property, then there is a P-point $p \in \omega^*$ with $p \subseteq \mathfrak{F}$.

- There is a P-point p such that every A ∈ p contains arbitrarily long arithmetic sequences. (Notice that such an ultrafilter is a "down-to-earth" example of a P-point that fails to be selective.)
- There is a *P*-point *p* such that for every $A \in p$, $\sum_{n \in A} \frac{1}{n}$ diverges.
- Fix a copy of the Rado graph with ω as the set of vertices. There is a P-point p such that for every A ∈ p, some subset of A is isomorphic to the Rado graph.

Example II: dynamics/algebra

Corollary

If $\mathfrak{p} = \mathfrak{c}$ then there is a minimal dynamical subsystem of ω^* that is also a P-set.

・ロト ・回ト ・ヨト

- E - N

Example II: dynamics/algebra

Corollary

If $\mathfrak{p} = \mathfrak{c}$ then there is a minimal dynamical subsystem of ω^* that is also a P-set. Therefore,

• the minimal right ideals of ω^* are not homeomorphically embedded.

Example II: dynamics/algebra

Corollary

If $\mathfrak{p} = \mathfrak{c}$ then there is a minimal dynamical subsystem of ω^* that is also a P-set. Therefore,

- the minimal right ideals of ω^* are not homeomorphically embedded.
- $(\omega^*, +)$ has prime ideals that are also minimal.

Example II: dynamics/algebra

Corollary

If $\mathfrak{p} = \mathfrak{c}$ then there is a minimal dynamical subsystem of ω^* that is also a P-set. Therefore,

- the minimal right ideals of ω^* are not homeomorphically embedded.
- $(\omega^*, +)$ has prime ideals that are also minimal.
- there is an idempotent ultrafilter that is both minimal and right maximal.

Example II: dynamics/algebra

Corollary

If $\mathfrak{p} = \mathfrak{c}$ then there is a minimal dynamical subsystem of ω^* that is also a P-set. Therefore,

- the minimal right ideals of ω^* are not homeomorphically embedded.
- $(\omega^*, +)$ has prime ideals that are also minimal.
- there is an idempotent ultrafilter that is both minimal and right maximal.
- assuming CH, there is a chain transitive map on ω^{*} that is isomorphic to neither the shift map nor its inverse.

イロト イヨト イヨト イヨト

A few questions about semifilters

Question

Is there a model in which no G_{δ} semifilter has a P-ultrafilter on it? For which \mathfrak{F} is it possible to keep P-points while eliminating P-ultrafilters on \mathfrak{F} ? The other way around?

A few questions about semifilters

Question

Is there a model in which no G_{δ} semifilter has a P-ultrafilter on it? For which \mathfrak{F} is it possible to keep P-points while eliminating P-ultrafilters on \mathfrak{F} ? The other way around?

Question

Suppose a semifilter \mathfrak{F} is Borel in 2^{ω} . Is it true that $\mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$?

A few questions about semifilters

Question

Is there a model in which no G_{δ} semifilter has a P-ultrafilter on it? For which \mathfrak{F} is it possible to keep P-points while eliminating P-ultrafilters on \mathfrak{F} ? The other way around?

Question

Suppose a semifilter \mathfrak{F} is Borel in 2^{ω} . Is it true that $\mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$?

A positive answer is obviously consistent (just put $\mathfrak{t} = \mathfrak{c}$). Any semifilter that would give a negative answer must be meager in 2^{ω} .

・ロト ・回ト ・ヨト

A few questions about semifilters

Question

Is there a model in which no G_{δ} semifilter has a P-ultrafilter on it? For which \mathfrak{F} is it possible to keep P-points while eliminating P-ultrafilters on \mathfrak{F} ? The other way around?

Question

Suppose a semifilter \mathfrak{F} is Borel in 2^{ω} . Is it true that $\mathfrak{t}_{\mathfrak{F}} \leq \mathfrak{t}$?

A positive answer is obviously consistent (just put $\mathfrak{t} = \mathfrak{c}$). Any semifilter that would give a negative answer must be meager in 2^{ω} . However, if we replace "Borel" with "meager" then a consistent negative answer is already known (in a length- ω_3 finite-support iteration of Hechler forcing over a model of CH).

A few questions about topological dynamics

Question

Is it consistent to have a chain transitive autohomeomorphism of $\omega_1^*?$

A few questions about topological dynamics

Question

Is it consistent to have a chain transitive autohomeomorphism of $\omega_1^*?$

Question

Does ZFC prove that some minimal subsystem of ω^* is a weak *P*-set?

A few questions about topological dynamics

Question

Is it consistent to have a chain transitive autohomeomorphism of $\omega_1^*?$

Question

Does ZFC prove that some minimal subsystem of ω^* is a weak *P*-set?

Question

If X is a chain transitive dynamical system of weight $\leq \aleph_1$, is it necessarily true that X is a quotient of ω^* ?